Loading Deck

Superconducting phases of monolayer transition-metal dichalcogenides

$$\newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\vK}{\mathbf{k}} \newcommand{\exOfK}{\left( \vK \right)} \newcommand{\exOfMK}{\left( - \vK \right)} \newcommand{\hc}{\text{h.c.}} \newcommand{\exInteration}[2]{ {c^-_{#1}}^† \left( \vK' \right) {c^-_{#2}}^† \left( - \vK' \right) c^-_{#2} \left( - \vK \right) c^-_{#1} \left( \vK \right) } $$

Outline

  1. Dichalcogenides overview
  2. Induced superconducting phase
  3. Optical transitions
  4. Superconducting optical excitations

Effective Hamiltonian

  • \( \mathrm{MoS_2} \), \( \mathrm{WS_2} \), \( \mathrm{MoSe_2} \), \( \mathrm{WSe_2} \)
  • Similar to monolayer graphene: two inequivalent valleys: \( \vect{K} \), \( \vect{K}' \)
  • Strong spin-orbit coupling and inversion symmetry breaking
  • Leads to opposite valley Berry curvature
  • Tight binding model: \( d_{z^2}, d_{xy}, d_{x^2 - y^2} \)

$$ H_0^{τ σ} \exOfK = a t \left(τ k_x σ_x + k_y σ_y \right) ⊗ I_2 + \frac{Δ}{2} σ_z ⊗ I_2 - λ τ \left(σ_z - 1 \right) ⊗ S_z $$

$$ H_0^{τ σ} \exOfK = \left[ \begin{matrix} \dfrac{Δ}{2} & a t \left( τ k_x - i k_y \right) \\ a t \left( τ k_x + i k_y \right) & λ τ σ - \dfrac{Δ}{2} \end{matrix} \right] $$

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

Energy Bands

The eight energy bands for \( \mathrm{MoS_2} \).

$$ E_{τ σ}^n \exOfK = \frac{1}{2} \left( λ τ σ + n \sqrt{ (2 a t)^2 \left\lvert \vect{k} \right\rvert^2 + \left( Δ - λ τ σ \right)^2 } \right) $$

Induced Superconductivity

Intervalley pairing

BCS pairs for induced superconducting states.
  • \( a^ν_{τ σ} \)—orbital operators
  • \( b_α \)—quasiparticle operators
  • BCS pairs in opposite valleys
  • Reduces to standard BCS Hamiltonian where \( α = τ = σ \) plays the role of the spin index
  • Not a singlet ground state: mixture of singlet and triplet states

$$ \begin{equation} H_V = - \sideset{}{'}∑_{\vK} \sideset{}{}∑_{ν, τ} Δ_ν {a^ν_{-τ ↓}}^† \exOfMK {a^ν_{τ ↑}}^† \exOfK + \hc \end{equation} $$

$$ \begin{equation} H - μ N = \sideset{}{'}∑_{\vK} \sideset{}{}∑_α λ_{\vK}^α b_{\vK α}^† b_{\vK α} + \sideset{}{'}∑_{\vK} \left(ξ_{\vK ↓} + λ_{\vK}^- \right) . \end{equation} $$

Optical Transitions

Optical transition rates for \( H_0 \).
Optical transitions strongly coupled to light polarization.

\( \vect{P}^{τ σ} \exOfK = \frac{m_0}{ħ} \left\langle u_+ \right\rvert ∇_{\vK} H_0^{τ σ} \exOfK \left\lvert u_- \right\rangle \)

\( P_±^{τ σ} \exOfK = P_x^{τ σ} ± i P_y^{τ σ} \)

  • Right circular polarization strongly couples to \( τ = + \) valley transitions
  • Left circular polarization strongly couples to \( τ = - \) valley transitions

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

SC Optical Excitations

Induced superconducting optical transition rates for \( τ = + \).
Induced superconducting optical transition rates for \( τ = - \).

\( \vect{P} \exOfK = \frac{m_0}{ħ} \left\langle Ω_f \right\rvert ∇_{\vK} H^{τ σ} \exOfK \left\lvert Ω \right\rangle \)

\( P_± \exOfK = P_x ± i P_y \)

\( \left\lvert Ω \right\rangle = ∏_{\vK} b_{\vK ↑} b_{-\vK ↓} \left\lvert 0 \right\rangle \)

\( \left\lvert Ω_f \right\rangle = \begin{cases} {c^+_α}^† \exOfK b_{-α} \exOfMK \left\lvert Ω \right\rangle & k > k_μ \\ {c^+_α}^† \exOfK b_{-α}^† \exOfMK \left\lvert Ω \right\rangle & k < k_μ \end{cases} \)

SC Optical Excitations

Compare to normal transitions

Strong induced superconducting optical transition rates. Dashed lines are \( H_0 \) transitions.
Weak induced superconducting optical transition rates. Dashed lines are \( H_0 \) transitions.
  • Upper band excitations are now paired with lower band quasiparticle excitations
  • Valley-polarization coupling is retained even in the superconducting case
  • Contrast is reduced in an region around the chemical potential