Superconducting phases of monolayer transition-metal dichalcogenides
- Evan Sosenko
- with
- Vivek Aji
Outline
- Dichalcogenides overview
- Induced superconducting phase
- Optical transitions
- Superconducting optical excitations
Effective Hamiltonian
- \( \mathrm{MoS_2} \), \( \mathrm{WS_2} \), \( \mathrm{MoSe_2} \), \( \mathrm{WSe_2} \)
- Similar to monolayer graphene: two inequivalent valleys: \( \vect{K} \), \( \vect{K}' \)
- Strong spin-orbit coupling and inversion symmetry breaking
- Leads to opposite valley Berry curvature
- Tight binding model: \( d_{z^2}, d_{xy}, d_{x^2 - y^2} \)
$$ H_0^{τ σ} \exOfK = a t \left(τ k_x σ_x + k_y σ_y \right) ⊗ I_2 + \frac{Δ}{2} σ_z ⊗ I_2 - λ τ \left(σ_z - 1 \right) ⊗ S_z $$
$$ H_0^{τ σ} \exOfK = \left[ \begin{matrix} \dfrac{Δ}{2} & a t \left( τ k_x - i k_y \right) \\ a t \left( τ k_x + i k_y \right) & λ τ σ - \dfrac{Δ}{2} \end{matrix} \right] $$
D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
Energy Bands
- \( Δ \)—band splitting
- \( λ \)—spin splitting
- \( τ \)—valley index
- \( σ \)—spin index
\( \mathrm{MoS_2} \)
- \( a t = 3.15 \: \text{Å eV} \)
- \( Δ = 1.66 \: \text{eV} \)
- \( 2 λ = 0.15 \: \text{eV} \)
- \( μ = -0.83 \: \text{eV} \)
$$ E_{τ σ}^n \exOfK = \frac{1}{2} \left( λ τ σ + n \sqrt{ (2 a t)^2 \left\lvert \vect{k} \right\rvert^2 + \left( Δ - λ τ σ \right)^2 } \right) $$
Induced Superconductivity
Intervalley pairing
- \( a^ν_{τ σ} \)—orbital operators
- \( b_α \)—quasiparticle operators
- BCS pairs in opposite valleys
- Reduces to standard BCS Hamiltonian where \( α = τ = σ \) plays the role of the spin index
- Not a singlet ground state: mixture of singlet and triplet states
$$ \begin{equation} H_V = - \sideset{}{'}∑_{\vK} \sideset{}{}∑_{ν, τ} Δ_ν {a^ν_{-τ ↓}}^† \exOfMK {a^ν_{τ ↑}}^† \exOfK + \hc \end{equation} $$
$$ \begin{equation} H - μ N = \sideset{}{'}∑_{\vK} \sideset{}{}∑_α λ_{\vK}^α b_{\vK α}^† b_{\vK α} + \sideset{}{'}∑_{\vK} \left(ξ_{\vK ↓} + λ_{\vK}^- \right) . \end{equation} $$
Optical Transitions
\( \vect{P}^{τ σ} \exOfK = \frac{m_0}{ħ} \left\langle u_+ \right\rvert ∇_{\vK} H_0^{τ σ} \exOfK \left\lvert u_- \right\rangle \)
\( P_±^{τ σ} \exOfK = P_x^{τ σ} ± i P_y^{τ σ} \)
- Right circular polarization strongly couples to \( τ = + \) valley transitions
- Left circular polarization strongly couples to \( τ = - \) valley transitions
D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
SC Optical Excitations
\( \vect{P} \exOfK = \frac{m_0}{ħ} \left\langle Ω_f \right\rvert ∇_{\vK} H^{τ σ} \exOfK \left\lvert Ω \right\rangle \)
\( P_± \exOfK = P_x ± i P_y \)
\( \left\lvert Ω \right\rangle = ∏_{\vK} b_{\vK ↑} b_{-\vK ↓} \left\lvert 0 \right\rangle \)
\( \left\lvert Ω_f \right\rangle = \begin{cases} {c^+_α}^† \exOfK b_{-α} \exOfMK \left\lvert Ω \right\rangle & k > k_μ \\ {c^+_α}^† \exOfK b_{-α}^† \exOfMK \left\lvert Ω \right\rangle & k < k_μ \end{cases} \)
SC Optical Excitations
Compare to normal transitions
- Upper band excitations are now paired with lower band quasiparticle excitations
- Valley-polarization coupling is retained even in the superconducting case
- Contrast is reduced in an region around the chemical potential