Effect of contacts on spin lifetime measurements in graphene
- Evan Sosenko
- with
- Vivek Aji
Outline
Click here for full results and the publication.
- Overview of spin injection experiment and nonlocal resistance
- Analytic solution including effect of contacts
- Fitting the solution to real data
- Limitations of fitting regimes
Outline
- Overview of spin injection experiment and nonlocal resistance
- Analytic solution including effect of contacts
- Fitting the solution to real data
- Limitations of fitting regimes
Familiar integral expression that ignores contact effects
RNL∝∫∞01√4πDtexp[−L24Dt]e−t/τcosωtdt
Device geometry
- L : contact spacing
- D : diffusion constant
- τ : spin lifetime
- λ=√Dτ
- ω=gμBB/ħ
- μs=12(μ↑−μ↓)
- J↑↓=σ↑↓∇μ↑↓
- JC↑↓=Σ↑↓(μN↑↓−μF↑↓)c
- J=J↑+J↓
- Js=J↑−J↓
D∇2μs−μsτ+ω×μs=0
V∝μNs(x=L)
J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Physica Slovaca 57, 565 (2007).
M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).
S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
M. Popinciuc, C. Józsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. van Wees, Phys. Rev. B 80, 214427 (2009).
Nonlocal resistance
Tunneling contacts
Finite contact resistance
- RC=5×105kΩ
- τ=427ps
- D=0.014m2/s
- λ=2.5μm
Infinite contact resistance
- τ=427ps
- D=0.014m2/s
W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).
Transparent contact
Finite contact resistance
- RC=3kΩ
- τ=130ps
- D=0.021m2/s
- λ=1.66μm
Infinite contact resistance
- τ=78ps
- D=0.01m2/s
- λ=1.4μm
W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).
Transparent contacts
Finite contact resistance
- RC=0.3kΩ
- τ=800×104ps
- D=0.015m2/s
- λ=350μm
W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).
Limits
- ❱ r→∞ or λ/r≪1
- r terms are negligible.
- Scale and zeros set by τ and D.
- ❱ ωτ≫1 & λ/r>1
- Zeros set by D only.
- Normalized case scales as f/f0∝(λ/r)2√ωτ.
- Can fit to increased τ with moderate decrease in r.
T. Maassen, I. J. Vera-Marun, M. H. D. Guimarães, and B. J. van Wees, Phys. Rev. B 86, 235408 (2012).
Conclusion
- Solve system with finite contact resistance
- Analytic expression for RNL
- Fit to real Hanle curve data and obtain reasonable results
- The r parameter introduces other parameter regimes and scaling freedom which can also give good fits
- Able to explain these regimes as limits of the analytic expression