Effect of contacts on spin lifetime measurements in graphene
- Evan Sosenko
- with
- Vivek Aji
Outline
Click here for full results and the publication.
- Overview of spin injection experiment and nonlocal resistance
- Analytic solution including effect of contacts
- Fitting the solution to real data
- Limitations of fitting regimes
Outline
- Overview of spin injection experiment and nonlocal resistance
- Analytic solution including effect of contacts
- Fitting the solution to real data
- Limitations of fitting regimes
Familiar integral expression that ignores contact effects
RNL∝∫∞01√4πDtexp[−L24Dt]e−t/τcosωtdt
Device geometry
- L : contact spacing
- D : diffusion constant
- τ : spin lifetime
- λ=√Dτ
- ω=gμBB/ħ
- μs=12(μ↑−μ↓)
- J↑↓=σ↑↓∇μ↑↓
- JC↑↓=Σ↑↓(μN↑↓−μF↑↓)c
- J=J↑+J↓
- Js=J↑−J↓
D∇2μs−μsτ+ω×μs=0
V∝μNs(x=L)
J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Physica Slovaca 57, 565 (2007).
M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).
S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
M. Popinciuc, C. Józsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. van Wees, Phys. Rev. B 80, 214427 (2009).
Nonlocal resistance
Tunneling contacts
Transparent contact
Transparent contacts
Limits
- ❱ r→∞ or λ/r≪1
- r terms are negligible.
- Scale and zeros set by τ and D.
- ❱ ωτ≫1 & λ/r>1
- Zeros set by D only.
- Normalized case scales as f/f0∝(λ/r)2√ωτ.
- Can fit to increased τ with moderate decrease in r.
T. Maassen, I. J. Vera-Marun, M. H. D. Guimarães, and B. J. van Wees, Phys. Rev. B 86, 235408 (2012).
Conclusion
- Solve system with finite contact resistance
- Analytic expression for RNL
- Fit to real Hanle curve data and obtain reasonable results
- The r parameter introduces other parameter regimes and scaling freedom which can also give good fits
- Able to explain these regimes as limits of the analytic expression