Superconducting Phases of Monolayer TMDs

Session R15: 2D Materials: Superconductivity and Correlations I

APS March Meeting 2016

Baltimore, MD, US

TMD crystal University of California, Riverside

Transition metal dichalcogenides

  1. TMD overview and tight-biding, low-energy, two-valley model
  2. Intrinsic and induced superconductivity
  3. Intervalley and intravalley paring channels
  4. Optical valley selection rules and Berry curvature
TMD crystal (top view) TMD crystal (side view)

TMD monolayers

  • Direct band gap semiconductors
  • Break inversion symmetry ⇒ gapped out spectrum
  • Two inequivalent valleys ⇒ new degree of freedom
  • Strong spin-orbit coupling ⇒ large valance band spin-splitting
  • Opposite valley Berry curvature
  • Optical valley probe and valley Hall effect
  • Two state tight binding model: \( d_{z^2} \), and \( d_{xy} \pm i d_{x^2 - y^2} \)

$$ H_0^{\tau s} \left( \mathbf{k} \right) = a t \left(\tau k_x s_x + k_y s_y \right) \otimes I_2 $$$$ + \frac{\Delta}{2} s_z \otimes I_2 - \lambda \tau \left(\sigma_z - 1 \right) \otimes S_z $$

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

Energy bands

Energy bands
  • \( \Delta \)—band splitting
  • \( \lambda \)—spin splitting
  • \( \tau \)—valley index
  • \( s \)—spin index
  • \( a t = 3.15 \) Å eV
  • \( \Delta = 1.66 \) eV
  • \( 2 \lambda = 0.15 \) eV
  • \( \mu = -0.83 \) eV

Superconducting sources

Substrate induced

$$ V = - \sum_{\mathbf{k} \nu \tau} \Delta_{\nu} {d^{\nu}_{\tau}}^{\dagger} \left( \mathbf{k} \right) d^{\nu}_{-\tau} \left( \mathbf{k} \right) $$

Intrinsic (density-density interaction)

$$ V = \frac{1}{2} \sum_{\mathbf{R} \mathbf{R'}} v_{\mathbf{R} \mathbf{R'}} :n_{\mathbf{R}} n_{\mathbf{R'}}: $$

Assume even pairing interaction

Superconducting channels

  • Project into upper-valance bands (\( \tau = s \))
  • Mean field theory BCS-type solutions: gap function \( \Delta_{\mathbf{k}} \)
  • \( m = 0 \) intervalley channel always dominates
  • Both classes give constant gap function for dominant paring

Induced

$$ \Delta_{\mathbf{k}} = \frac{1}{2} \left( \Delta_+ + \Delta_- \right) - \frac{1}{2} \left( \Delta_+ - \Delta_- \right) \cos{\theta_{\mathbf{k}}} $$

Intrinsic

$$ \Delta_{\mathbf{k}} = g_{\mathbf{k}} v_0 \sum_{\mathbf{k}'} g^*_{\mathbf{k}'} \langle c_{-\mathbf{k}' \alpha'} c_{\mathbf{k}' \alpha} \rangle $$

Optical coupling

  • Harmonic perturbation ⇒ correlated phase's optical transition rates
  • \( \mathbf{A} / |\mathbf{A}| = \mathbf{\epsilon} e^{i \omega t} + \mathbf{\epsilon}^* e^{-i \omega t} \), \( \mathbf{k} \rightarrow \mathbf{k} + e \mathbf{A} \)
  • Valley selection remains coupled to circularly polarized light
Optical transition rate

Berry curvature

  • BCS ground state has zero net curvature
  • Optical pair-breaking ⇒ selectively excite carriers in single valley
  • Berry curvature retains relative sign relations
  • Anomalous Hall velocity \( \mathbf{v} = - \dot{\mathbf{k}} \times \mathbf{\Omega} \left( \mathbf{k} \right) \)
Optical transition rate