Spin and Valley Physics in Two Dimensional Systems Graphene and Superconducting Transition Metal Dichalcogenides
Doctoral Thesis Defense
evansosenko.com/deck-doctoral-thesis
- Evan Sosenko
- with
- Vivek Aji
Background
2D Materials promise novel application
- Graphene discovered 2004
- 2D hexagonal carbon lattice, high electron mobility
- Relativistic low-energy model: Dirac cones, linear dispersion
- Strong, flexible & transparent
- Monolayer TMDs: also hexagonal lattice
- Gapped with strong spin-orbit coupling
- Both excellent candidates for spintronic devices
Spintronics
- Nobel Prize for GMR in 2007 (Albert Fert, Peter Grünberg)
- A future with devices built on spin-current
- Smaller and lower power
- Graphene? Predicted excellent conductor for spin-current
- TMDs? No spin degeneracy and spin couples to light polarization
Overview for Part I
Spin lifetime
- Injection, transmission, detection of spin signals
- Spin signals degrade via internal scattering
- Spin lifetime measures how quickly this happens
- Critical to find materials with long spin lifetimes
Motivation
- Theoretical predictions longer than measured: \( \text{ms} \) vs. \( \text{ps} \)
- Finite contact resistance mismatch: a potential candidate
- Unified analytic solution for fitting data in all limits
Outline
- Model and solution
- Hanle curve fitting
- Regimes and results
Device geometry
- \( L \) : contact spacing
- \( D \) : diffusion constant
- \( \tau \) : spin lifetime
- \( \lambda = \sqrt{D \tau} \)
- \( \omega = g \mu_B B / \hbar \)
- \( \mu_s = \frac{1}{2} \left( \mu_{\uparrow} - \mu_{\downarrow} \right) \)
- \( J_{\uparrow \downarrow} = \sigma_{\uparrow \downarrow} \nabla \mu_{\uparrow \downarrow} \)
- \( J_{\uparrow \downarrow}^C = \Sigma_{\uparrow \downarrow} \left( \mu^N_{\uparrow \downarrow} - \mu^F_{\uparrow \downarrow} \right)_c \)
- \( J = J_{\uparrow} + J_{\downarrow} \)
- \( J_s = J_{\uparrow} - J_{\downarrow} \)
$$D \nabla^2 \mu_s - \frac{\mu_s}{\tau} + \omega \times \mu_s = 0$$
$$V \propto \mu_s^N(x = L)$$
$$R_\text{NL} = V / I$$
Motivation for solution
Existing results
- All existing analytic expressions ignore contact resistance
- Assume infinite resistance for convenience
- Integral form widely used but difficult to fit
- Only a numeric treatment of finite contact resistance
$$ R_{\text{NL}} \propto \text{Re} {\frac{e^{- \left( L / \lambda \right) \sqrt{1 + i \omega \tau}}} {2 \sqrt{1 + i \omega \tau}}} $$
$$ R_{\text{NL}} \propto \int_0^{\infty} \frac{1}{\sqrt{4 \pi D t}} \exp{\left[ - \frac{L^2}{4 D t} \right]} e^{-t / \tau} \cos{\omega t} \: dt $$
Our approach
- Finite contact resistance
- Exact analytic expression
- Matches previous approaches in appropriate limits
Computation
- Drift diffusion equation in contacts and semiconductor
- Continuity of current and spin current at boundary
- Conservation of current and spin
- Solution gives nonlocal resistance
Non-local resistance
$$\Delta R_{\text{NL}} = 2 P^2 R_N \left\lvert f \right\rvert$$
- \( r = \frac{R_F + R_C}{R_{\text{SQ}}} W \)
- \( R_{\text{SQ}} = W / \sigma^N \)
- \( R_N = \frac{\lambda}{W L} \frac{1}{\sigma^N} \)
$$ f = \text{Re} \left\{ \left( 2 \left[ \sqrt{1 + i \omega \tau} + (\lambda / r) \right] e^{\left( L / \lambda \right) \sqrt{1 + i \omega \tau}} + (\lambda / r)^2 \frac{ \sinh{\left[ \left( L / \lambda \right) \sqrt{1 + i \omega \tau} \right]}} {\sqrt{1 + i \omega \tau}} \right)^{-1} \right\} $$
Only scales that appear in \( f \)
- \( L / \lambda \)
- \( \lambda / r \)
- \( \omega \tau \)
Fits
Tunneling contacts
- \( L = 2.1 \: \mu \text{m} \)
- \( P = 0.19 \: \)
- \( R_\text{C} = 2.03 \times 10^7 \: \text{k} \Omega \)
- \( \tau = 514.3 \: \text{ps} \)
- \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)
Tunneling contacts
- \( L = 5.5 \: \mu \text{m} \)
- \( P = 0.1 \: \)
- \( R_\text{C} = 6.70 \times 10^6 \: \text{k} \Omega \)
- \( \tau = 451.84 \: \text{ps} \)
- \( D = 0.01 \: \text{m}^2 \text{s}^{-1} \)
Fits
Pinhole contacts
- \( L = 3 \: \mu \text{m} \)
- \( P = 0.23 \: \)
- \( R_\text{C} = 2.31 \times 10^7 \: \text{k} \Omega \)
- \( \tau = 132.28 \: \text{ps} \)
- \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)
Transparent contacts
- \( L = 3 \: \mu \text{m} \)
- \( P = 0.01 \: \)
- \( R_\text{C} = 2.94 \: \text{k} \Omega \)
- \( \tau = 130.36 \: \text{ps} \)
- \( D = 0.04 \: \text{m}^2 \text{s}^{-1} \)
Regimes
Zero field
$$ \Delta R_{\text{NL}} = \left( P_{\Sigma}^L \right)^2 R_N e^{- L / \lambda} $$
Tunneling contacts
$$ f^{\infty} = \text{Re} {\frac{e^{- \left( L / \lambda \right) \sqrt{1 + i \omega \tau}}} {2 \sqrt{1 + i \omega \tau}}} $$
Fits independent of lifetime
\( \lambda / r \gg \sqrt{\omega \tau} \gg 1 \)
Zeros determined by $$ L \sqrt{\frac{D}{2 \omega}} + \frac{\pi}{4} = \frac{n \pi}{2} $$
E. Sosenko, H. Wei, and V. Aji, Phys. Rev. B 89, 245436 (2014).Fits: \( \tau \) Independent Limit
Transparent contacts
- \( L = 3 \: \mu \text{m} \)
- \( P = 0.02 \: \)
- \( R_\text{C} = 0.27 \: \text{k} \Omega \)
- \( \tau = 9.97 \times 10^9 \: \text{ps} \)
- \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)
Transparent contacts
- \( L = 3 \: \mu \text{m} \)
- \( P = 0.02 \: \)
- \( R_\text{C} = 0.28 \: \text{k} \Omega \)
- \( \tau = 9.95 \times 10^{13} \: \text{ps} \)
- \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)
Software
Data Fitting with SciPy
Independent Python package for general curve fitting
github.com/razor-x/scipy-data_fitting
Fitalyzer
Browser based fitting visualizer
Transition metal dichalcogenides
- TMD overview and tight-biding, low-energy, two-valley model
- Optical valley selection rules and Berry curvature
- Intrinsic and induced superconductivity
- Intervalley and intravalley paring channels
- Superconducting optoelectronics and Berry curvature
TMD monolayers
- Direct band gap semiconductors: \( \mathrm{MoS_2} \), \( \mathrm{WS_2} \), \( \mathrm{MoSe_2} \), \( \mathrm{WSe_2} \)
- Break inversion symmetry ⇒ gapped out spectrum
- Two inequivalent valleys ⇒ new degree of freedom
- Strong spin-orbit coupling ⇒ large valance band spin-splitting
- Opposite valley Berry curvature
- Optical valley probe and valley Hall effect
- Two state tight binding model: \( d_{z^2} \), and \( d_{xy} \pm i d_{x^2 - y^2} \)
$$ H_{\tau}^0 \left( \mathbf{k} \right) = a t \left(\tau k_x \sigma_x + k_y \sigma_y \right) \otimes I_2 + \frac{\Delta}{2} \sigma_z \otimes I_2 - \lambda \tau \left(\sigma_z - 1 \right) \otimes S_z $$
D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).Energy bands
- \( \Delta \)—band splitting
- \( \lambda \)—spin splitting
- \( \tau \)—valley index
- \( s \)—spin index
- \( a t = 3.15 \) Å eV
- \( \Delta = 1.66 \) eV
- \( 2 \lambda = 0.15 \) eV
- \( \mu = -0.83 \) eV
Optical excitations
Optoelectronic coupling
- Right circularly polarized light couples to right valley \( P_+ \)
- Left circularly polarized light couples to left valley \( P_- \)
Valley Hall effect
Semiclassical equations
\( \dot{\mathbf{r}} = \nabla_{\mathbf{k}} E \left( \mathbf{k} \right) - \dot{\mathbf{k}} \times \mathbf{\Omega} \left( \mathbf{k} \right) \)
\( \dot{\mathbf{k}} = -e \mathbf{E} - e \dot{\mathbf{r}} \times \mathbf{B} \)
Anomalous velocity
\( \mathbf{v} = e \mathbf{\Omega} \left( \mathbf{k} \right) \times \mathbf{E} \)
Berry curvature
\( \mathbf{\Omega}_{\tau \sigma}^n \left( \mathbf{k} \right) = \nabla_{\mathbf{k}} \times \left\langle u_{\tau \sigma}^n \left( \mathbf{k} \right) \right\rvert i \nabla_{\mathbf{k}} \left\lvert u_{\tau \sigma}^n \left( \mathbf{k} \right) \right\rangle \)
Broken inversion symmetry
\( \mathbf{\Omega}_{\tau, \sigma}^n \left( \mathbf{k} \right) = - \mathbf{\Omega}_{-\tau, \sigma}^n \left( \mathbf{k} \right) \neq 0 \)
Superconducting sources
Substrate induced
$$ V = - \sum_{\mathbf{k} \nu \tau} B_{\nu} {d^{\nu}_{\tau}}^{\dagger} \left( \mathbf{k} \right) d^{\nu}_{-\tau} \left( \mathbf{k} \right) $$
Intrinsic (density-density interaction)
$$ V = \frac{1}{2} \sum_{\mathbf{R} \mathbf{R'}} v_{\mathbf{R} \mathbf{R'}} :n_{\mathbf{R}} n_{\mathbf{R'}}: $$
Assume even pairing interaction
BCS Hamiltonian
$$ H - \mu N = \sum_{\mathbf{k} \sigma} \xi_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma} - \sum_{\mathbf{k}} \left( \bar{\Delta}_{\mathbf{k}} c_{-\mathbf{k} \downarrow} c_{\mathbf{k} \uparrow} + \Delta_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger} \right) = \sum_{\mathbf{k} \sigma} \lambda_{\mathbf{k}} \gamma_{\mathbf{k} \sigma}^{\dagger} \gamma_{\mathbf{k} \sigma} $$
Superconducting channels
Induced
$$ \Delta_{\mathbf{k}} = \frac{1}{2} \left( B_+ + B_- \right) - \frac{1}{2} \left( B_+ - B_- \right) \cos{\theta_{\mathbf{k}}} $$
Intrinsic
$$ \Delta_{\mathbf{k}} = \chi_0 \cdot f_{\mathbf{k}} $$
Gap equation
$$ \chi_0 = \frac{v_0}{2} \sum_{\mathbf{k}} \frac{f_{\mathbf{k}} \cdot \chi_0}{\lambda_{\mathbf{k}}} \bar{f}_{\mathbf{k}} $$
- Project into upper-valance bands (\( \tau = s \))
- Mean field theory BCS-type solutions: gap function \( \Delta_{\mathbf{k}} \)
- Different \( f_{\mathbf{k}} \) per channel
- \( m = 0 \) intervalley channel always dominates
- Both classes give constant gap function for dominant paring
Optical coupling
- \( \mathbf{A} / A_0 = \mathbf{\epsilon} e^{i \omega t} + \mathbf{\epsilon}^* e^{-i \omega t} \), \( \mathbf{k} \rightarrow \mathbf{k} + e \mathbf{A} \)
- Harmonic perturbation ⇒ correlated phase's optical transition rates
- Valley selection remains coupled to circularly polarized light
Berry curvature
- BCS ground state has zero net curvature
- Optical pair-breaking ⇒ selectively excite carriers in single valley
- Berry curvature retains relative sign relations
Conclusion
Spin lifetime measurements
- Analytical solution modeling a nonlocal spin value which includes the ferromagnet contacts
- Developed software to refit data with new result
- Analyzed various regimes to understand the limits of the model
Superconducting states in TMDs
- Characterized superconducting phases in regime where with locked spin and valley indexes
- The correlated state inherits the valley contrasting phenomena
- Pair-breaking produces quasiparticles that have the same Berry curvature (same anomalous velocity)